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[1] Large-scale groundwater pumping or deep fluid injection in a multilayered subsurface
system may generate pressure perturbation not only in the target formation(s), but also in
over- and underlying units. Hydraulic communication in the vertical direction may occur
via diffuse leakage through aquitards and/or via focused leakage through leaky wells.
Existing analytical solutions for pressure perturbation and fluid flow in such systems
consider either diffuse leakage or focused leakage, but never in combination with each
other. In this study, we developed generalized analytical solutions that account for the
combined effect of diffuse and focused leakage. The new solutions solve for pressure
changes in a system of N aquifers with alternating leaky aquitards in response to fluid
injection/extraction with any number, NI, of injection/pumping (active) wells, and passive
leakage/recharge in any number, NL, of leaky wells. The equations of horizontal
groundwater flow in the aquifers are coupled by the vertical flow equations in the aquitards
and by the flow continuity equations in the leaky wells. The solution methodology,
described in detail in this paper, involves transforming the transient flow equations into the
Laplace domain; decoupling the resulting ordinary differential equations (ODEs) coupled
by diffuse leakage via eigenvalue analysis ; solving a system of NL � N linear algebraic
equations for the unknown rates of flow through leakage wells; and superposing the
solution of pressure buildup/drawdown in aquifers and aquitards resulting from flow in the
NI active and NL leaky wells. Verification of the new methodology was achieved by
comparison with existing analytical solutions for diffuse leakage and for focused leakage,
and against a numerical solution for combined diffuse and focused leakage. Application to
an eight-aquifer system with leaky aquitards and one leaky well demonstrates the usefulness
and efficiency of the approach, and illustrates the pressure behavior over a spectrum of
leakage scenarios and parameters.
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1. Introduction
[2] Sedimentary basins often consist of a number of rela-

tively high-permeability aquifers alternating with relatively
low-permeability aquitards. The aquifers and aquitards may
often extend over large areas, even covering entire basins.
Examples of large multilayered basins in the United States
include the Dakota aquifer system in South Dakota [Brede-
hoeft et al., 1983], the Cambrian-Ordovician aquifer system
in the Illinois basin [Young, 1992; Zhou et al., 2010], the
coastal plain aquifer systems in Virginia [Konikow and
Neuzil, 2007], and the Texas Gulf Coast basin [Nicot,
2008]. The alternating aquitards can play an important role
in regional groundwater flow, because they frequently have
non-negligible permeability and storativity. It has been
shown, for example, that the comparably high aquitard

storativity in the Dakota aquifer system significantly con-
tributes to water production in the area [Bredehoeft et al.,
1983; Konikow and Neuzil, 2007]. Recently, Konikow and
Neuzil [2007] assessed significant sources of groundwater
stored in aquitards, which can be depleted and used for
water supply. The nonzero permeability of aquitards has
been demonstrated through laboratory core measurements
[Neuzil, 1986, 1994; Yang and Aplin, 2007, 2010] and re-
gional groundwater flow modeling [Hart et al., 2006]; per-
meability values can vary over a large range, from 10�15 to
10�23 m2 [e.g., Neuzil, 1994; Yang and Aplin, 2010].

[3] Many sedimentary basins with multiple aquifers and
alternating aquitards have been affected by extensive dril-
ling, e.g., for groundwater supply (mostly shallow units)
[e.g., Young, 1992], as well as for oil/gas exploration and
production (both shallow and deep units) [e.g., Nordbotten
et al., 2004; Nicot, 2009]. Production wells for ground-
water supply may be simultaneously screened in multiple
aquifers. Flow through such multiaquifer wells is believed
to increase the effective regional-scale permeability of
aquitards, which can be orders of magnitude higher than
the permeability measured on individual cores [Hart et al.,
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2006]. In oil/gas exploration and production, sealing or
plugging of abandoned wells (e.g., unsuccessful explora-
tion wells, once-producing wells in depleted reservoirs) is
standard practice ; however, older (historic) wells may be
improperly sealed or cement plugs may have degraded over
time. Therefore, abandoned wells are considered potential
conduits for fluid leakage and groundwater contamination
[Gass et al., 1977, Javandel et al., 1988; Lesage et al.,
1991], and they may provide another pathway for vertical
communication in a multilayered system.

[4] Both diffuse leakage (through aquitards) and focused
leakage (through leaky wells) can be particularly relevant
in the case of strong and wide-spread pressure perturbations
in the subsurface. Such perturbations may be caused by re-
gional groundwater production, by oil and gas production,
and by high-volume injection of fluids for liquid waste dis-
posal or geologic sequestration of CO2. The amount of
CO2, for example, that will need to be captured and stored
in order for geologic sequestration to have a significant role
in climate change mitigation is enormous [Zhou and
Birkholzer, 2011]. A large coal-fired power plant may gener-
ate 5–10 million tons of CO2 per year, which if injected
underground can induce pressure buildup and brine displace-
ment over large areas [e.g., Nicot, 2008; Zhou et al., 2008,
2010; Birkholzer and Zhou, 2009]. Birkholzer et al. [2009]
have demonstrated the importance of diffuse leakage in low-
ering pressure buildup (‘‘pressure bleed-off’’) in the storage
aquifer for aquitard permeabilities as low as 10�18 m2. On the
other hand, the possibility of focused leakage of CO2 and
brine through abandoned wells is one of the main environ-
mental concerns for geologic sequestration of CO2 in depleted
oil reservoirs and saline aquifers [Celia et al., 2004, 2011].

[5] As an alternative to numerical simulation models, an-
alytical solutions are often employed in subsurface flow
and transport applications because they are very efficient
with regard to calculation time and do not require spatial
discretization. Because the solutions can be obtained so
fast, analytical methods can be very useful in sensitivity
studies or uncertainty quantifications. They are particularly
suitable when dealing with a large number of injection and
leaky wells [e.g., Celia et al., 2011], which, for numerical
simulations, would require local mesh refinement around
each well to assure accurate results. A variety of analytical
solutions have been developed over the last 80 years or so
for problems involving pumping/injection in multilayered-
aquifer systems. The first category of such solutions allowed
for diffuse leakage through aquitards, but did not consider
leaky wells. In the 1930s through the 1960s, analytical solu-
tions were developed for pumping from the lower aquifer of a
two-aquifer–one-aquitard system. Huisman and Kemperman
[1951] and Hantush and Jacob [1955] considered steady
state (assuming zero aquitard storativity) flow, and Hantush
[1960] considered transient flow (with aquitard storage)
through the aquitard. The restriction of an infinite-volume
top aquifer assumption in the transient solution was removed
in the solution of Neuman and Witherspoon [1969], who
assumed that the two-aquifer–one-aquitard system was
bounded by impervious boundaries at the top and the bot-
tom. These solutions were later improved, for example, to
allow for pumping/injection wells of a large diameter
with well-skin effects by Moench [1985], and to consider a
laterally bounded aquifer–aquitard system by Zhou et al.

[2009]. Analytical solutions were also extended to multilay-
ered systems with any number of aquifers, e.g., for transient
flow with zero aquitard storativity using both the Laplace
transform and the Hankel transform [Hemker, 1985]; for
steady state flow with zero aquitard storativity using the
Fourier transform [Maas, 1987a]; and for transient flow
with aquitard storativity using the Hankel and the Fourier
transform [Maas, 1987b]. An important advancement in the
solution methodology involved the use of eigenvalues and
eigenvectors to decouple the system of ordinary differential
equations (e.g., for steady state flow by Hunt [1985] and for
transient flow in the Laplace domain by Hemker and Maas
[1987]). This advancement allowed very efficient solutions
for multilayered systems [Cheng and Morohunfola, 1993;
Hemker and Maas, 1994; Cheng, 1994]. The solution
method referred to above for diffuse leakage resulting from
pumping/injection wells in multilayered systems was imple-
mented into the commercial code MLU (Multi-Layer
Unsteady State) [Hemker and Post, 2011]. Veling and Maas
[2009] further improved the solution method for diffuse
leakage in multilayered aquifers by including both horizon-
tal and vertical flow components in aquifers and aquitards
with partially penetrating wells.

[6] The second category of analytical solutions allowed
for flow through leaky abandoned wells, but without con-
sideration of diffuse leakage through aquitards. The devel-
opment of these solutions was driven by the concern about
leakage as potentially induced by fluid injection for liquid
waste disposal and/or geologic carbon sequestration. Jav-
andel et al. [1988] and Avci [1994] presented analytical
solutions for leakage through one leaky well in a two-
aquifer–one-aquitard system bounded by impervious boun-
daries at the top and the bottom. They presented their
solutions as a convolution of (1) the unknown time-
dependent leakage rate and (2) the existing fundamental
solutions for either constant or instantaneous pumping/
injection in a confined aquifer [Theis, 1935; Bear, 1979],
and then applied the Laplace transform to solve for the
leakage rate and the drawdown. Javandel et al. [1988]
assumed that the top aquifer was of an infinite volume,
while Avci [1994] allowed for pressure changes to occur
in the bottom and top aquifers. Recently, Nordbotten et al.
[2004] developed an analytical solution for leakage through
multiple leaky wells in a multilayered system; their solu-
tion numerically evaluated the convolution integrals involv-
ing time-dependent leakage rates and approximated the
exponential integral (i.e., the well function of infinite terms
[Theis, 1935]) by its finite terms. This appeared to result in
satisfactory accuracy except for very early-time behavior.
Note that this solution needs adequate temporal discretiza-
tion to obtain pressure changes and leakage rates at a given
time, while the Javandel and Avci solutions can directly
calculate these results, without any time-stepping. As evi-
dent from the above discussion, the existing analytical sol-
utions either consider diffuse leakage through aquitards but
no leaky wells, or they allow for focused leakage through
leaky wells but not for diffuse leakage through aquitards.
Simultaneous representation of both processes would allow
for a more realistic prediction of the pressure and leakage
behavior in natural multilayered aquifer–aquitard systems.
Therefore, we describe here a set of new generalized ana-
lytical solutions for coupled diffuse and focused leakage in
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a multilayered system consisting of any number of aqui-
fers, alternating aquitards, pumping/injection wells, and
leaky wells. These solutions encompass and advance the
features and capabilities of the many existing analytical
solutions discussed above and provide a major improve-
ment in analytically solving the subsurface flow processes
in multilayered aquifer–aquitard systems.

[7] This paper is organized as follows. Section 2 presents
the groundwater flow equations for aquifers and aquitards
and reviews the initial and boundary conditions, as well as
the conditions at aquifer–aquitard interfaces, well–aquifer
interfaces, and well–aquitard interfaces. In section 3, gener-
alized analytical solutions are presented for systems with
one injection well and one leaky well, starting with the so-
lution procedure for diffuse leakage, followed by focused
leakage, and finally combined leakage. Particular solutions
for a two-aquifer–one-aquitard system are derived from the
generalized solutions and compared with existing analytical
solutions. The general solution for any number of injection
wells and leaky wells is presented using superposition. The
new solutions are verified in section 4 by comparison to
existing analytical solutions and to numerical simulations.
Finally, a ‘‘real-world’’ demonstration application with
eight aquifers, seven aquitards, and one leaky well is pre-
sented in section 5. The new solutions were implemented
into a FORTRAN-based software package described briefly
in the appendix, which reads in the problem specifications,
executes the calculation, and returns calculation results.

2. Governing Equations
[8] We consider a confined subsurface system consisting

of any number of aquifers, alternating aquitards, pumping/
injection wells, and leaky wells. The solution domain is

bounded at the top and bottom by either no-flow or fixed-
head boundary conditions, and extends infinitely in the
horizontal direction. Initially, the subsurface system is at
hydrostatic conditions, which are then perturbed by pump-
ing and/or injection through multiple wells in selected
aquifers at given rates. We are particularly interested in
pressure perturbations that are strong enough to affect a large
portion of the vertical sequence of aquifers and aquitards,
which may be coupled with each other due to diffuse leak-
age through aquitards and focused leakage through leaky
wells. We use injection activities as the example case for the
following mathematical derivations, but point out that the
solution methodology is also applicable to system perturba-
tions induced by pumping alone or by combined pumping
and injection. The analytical solutions calculate the transient
behavior of pressure buildup in all aquifers and aquitards,
the rate of diffuse leakage through aquitards, and the rate of
focused leakage through leaky wells.

2.1. Problem Description and Assumptions
[9] We have made the following assumptions and nota-

tions (see Figure 1). Each of the N aquifers (aquifer i, i ¼
1, . . . , N, numbered from the bottom aquifer to the top aq-
uifer) is homogeneous and isotropic with hydraulic conduc-
tivity Ki (L T�1) and specific storativity Ss,i (L�1); it is also
assumed that each aquifer i has uniform thickness Bi (L).
Different aquifers may have different hydrogeological
properties (see Figure 1a). The N þ 1 alternating aquitards
(aquitard i, i ¼ 0, . . . , N), globally numbered from 0 at the
bottom to N at the top, are also homogeneous and isotropic
(though each may have different hydraulic conductivity Ki

0

and specific storativity S0s;i) with uniform thickness Bi
0.

(Note that the specific example shown in Figure 1 has the
vertical domain enveloped by top and bottom aquitards;

Figure 1. Description of (a) a typical multilayered system of N aquifers and N þ 1 aquitards, with one
injection well and one leaky well, (b) the local vertical coordinates for an aquifer and its neighboring
aquitards, and (c) the continuity of well leakage. The length and thickness of arrows conceptually reflect
the magnitude of diffuse- and focused-leakage rates.
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however, any other configurations can be handled with the
analytical solutions.) For solution development, we define
a local aquitard numbering system relative to each aquifer i
with the overlying (� ¼ þ) or underlying (� ¼ �) aqui-
tards denoted by a relative index (i; �), such that their prop-
erties are referred to as hydraulic conductivity K�

i , specific
storativity S�s;i, and thickness B�i (see Figure 1b). It is
assumed that groundwater flow is horizontal in the aquifers
and vertical in the aquitards. This assumption is valid as
long as the ratio of hydraulic conductivity between the aqui-
fers and the aquitards is larger than 100, as demonstrated by
previous studies [e.g., Neuman and Witherspoon, 1969].

[10] The new generalized solution allows for considera-
tion of multiple injection wells, and each well may have
multiple well intervals screened in selected aquifers. The
rate, Qi,m (L3 T�1), of fluid injection into aquifer i at injec-
tion well m (m ¼ 1, . . . , NI, where NI is the number of injec-
tion wells) is known, and thus can be assigned as a
boundary condition. The radius of injection well m in aquifer
i is rwi,m. Multiple leaky wells may also exist in the aquifer–
aquitard system. These leaky wells allow for fluid exchange
between some or all of the aquifers of the multilayered sys-
tem (Figure 1c). For example, the pressure buildup induced
by fluid injection into aquifer i will drive native fluid into the
wellbore (with a radius of rLi,l) at leaky well l (l ¼ 1, . . . , NL

where NL is the number of leaky wells), and the fluid will
then be transported via the wellbore into the overlying aqui-
fer(s) and/or the underlying aquifer(s). The fluid exchange
between aquifer i and well l is horizontal through the fully
penetrated well–aquifer segment Li,l, with an unknown leak-
age rate ui,l (L3 T�1) (the solution also allows for ui,l ¼ 0
representing a cased, or impervious well–aquifer segment).

[11] Each leaky well segment may be assigned a differ-
ent value for hydraulic conductivity (a well segment is
defined as the vertical distance associated with the aquifers
and aquitards that the leaky well penetrates). The rate of
leakage from aquifer i through well l is the sum of the rates
of leakage through the overlying and underlying well–aqui-
tard segments, assuming there is no storage effect in the
wellbore segment. The leakage rate through the overlying
(or underlying) well–aquitard segment depends on the hy-
draulic head difference between aquifer i and aquifer i þ 1
(or i � 1) and the hydraulic conductivity, K�

Li;l (L T�1), of
well–aquitard segment L�i;l, as well as the wellbore area
(�r2

Li;l) (L2). The water that has leaked upward through
well–aquitard segment Lþi;l may be diverted into the overly-
ing aquifer i þ 1 and/or may continue to migrate upward
through the overlying well–aquitard segment, and beyond.

[12] In a thick multilayered system (which may extend
from the ground surface to aquifers several kilometers
deep), fluid properties of interest such as density or viscos-
ity vary as a function of pressure, temperature, and salinity
changes. For example, in situ groundwater density may
vary by as much as 20% between near-surface conditions
and conditions a few kilometers deep. We assume that the
changes in density or viscosity distribution as a result of
injection-induced pressurization or salinity changes from
vertical leakage are negligible.

2.2. Governing Equations for Aquifers and Aquitards
[13] We start by presenting the governing equations for

flow in aquifers and aquitards caused by injection through a

single well (or leakage through a single leaky well). Super-
position will be used in the following section to solve for
pressure buildup and diffuse leakage rates in a system with
multiple injection and leaky wells. The governing equation
for single-phase radial flow in aquifer i is written in terms
of hydraulic head buildup si ¼ si(r, t) (L) [Bear, 1972;
Moench, 1985; Hemker, 1985; Hunt, 1985; Maas, 1987b;
Cheng and Morohunfola, 1993; Zhou et al., 2009]

1
r
@

@r
r
@si

@r

� �
¼ 1

Di

@si

@t
þ w�i

Ti
þ wþi

Ti
; i ¼ 1; . . . ;N ; ð1aÞ

where si ¼ hi(r, t) – hi0, hi (L) is the hydraulic head in aquifer
i, hi0 is the initial uniform head in the aquifer, Di (¼ Ki/Ss,i)
(L2 T�1) is the hydraulic diffusivity, and Ti (= KiBi) (L2 T�1)
is the transmissivity, r (L) is the radial distance from the cen-
ter of the well, and t (T) is the time. w�

i (L T�1) denotes the
rate of diffuse leakage (i.e., specific discharge) through the
aquifer–aquitard interface from aquifer i into the overlying
(� ¼ þ) or underlying (� ¼ �) aquitard, and can be calcu-
lated using

w�
i ¼ �

K�
i

B�i

@s�i
@z�Di

����
z�Di¼0

; ð1bÞ

where s�i ¼ s�i ðr; z�Di; tÞ (L) is the hydraulic head buildup
in aquitard (i; �), z�Di ð¼ z�i =B�i ; 0 � z�Di � 1Þ is the dimen-
sionless local vertical coordinate, and z�i (L) is the local
vertical coordinate, with z�i ¼ 0 at the interface between
aquifer i and aquitard (i; �) and z�i ¼ B�i at the interface
between aquifer iþ � and aquitard (i; �) (see Figure 1b).
Note that iþ � ¼ iþ 1 for � ¼ þ, while iþ � ¼ i� 1 for
� ¼ �.

[14] The one-dimensional vertical flow through aquitard
(i; �) is written as,

@2s�i
@z�Di

2 ¼
B�i
� �2

D�
i

@s�i
@t

; 0 � z�Di � 1; ð2aÞ

with the boundary conditions at aquifer–aquitard interfaces:

s�i ðr; 0; tÞ ¼ siðr; tÞ;
s�i ðr; 1; tÞ ¼ siþ�ðr; tÞ;

ð2bÞ

where D�
i ð¼ K�

i =S�s;iÞ is the hydraulic diffusivity of aqui-
tard (i; �), and there exists a relationship sþi ðr; zþDi; tÞ ¼
s�iþ1ðr; z�Diþ1; tÞ for z�Diþ1 ¼ 1� zþDi.

[15] The entire system of aquifers and aquitards is
assumed to be at hydrostatic pressure initially. (This assump-
tion is not necessary to develop the following analytical sol-
utions for head buildup and leakage rates, but it helps
simplify the solution development for the diffuse leakage
case because initial head differences in the aquifers make
equations [1] and [2] a coupled system of nonhomogeneous
equations.) The initial conditions for the aquifers and the
aquitards can be written as follows:

si r; t ¼ 0ð Þ ¼ 0; ð3aÞ

s�i r; z�Di; t ¼ 0
� �

¼ 0: ð3bÞ
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[16] The outer lateral boundary is assumed to be far
away from the perturbed region, i.e., at infinity, so that the
boundary conditions become:

si 1; tð Þ ¼ 0;

s�i 1; z�Di; t
� �

¼ 0:
ð4Þ

[17] The top and the bottom of the system may have ei-
ther a zero head buildup or a no-flow condition:

s�1 r; 1; tð Þ ¼ 0 or ð5aÞ

@s�1 r; 1; tð Þ=@z�D1 ¼ 0; ð5bÞ

sþN r; 1; tð Þ ¼ 0 or ð6aÞ

@sþN r; 1; tð Þ=@zþDN ¼ 0: ð6bÞ

[18] Equations (1)–(6) are the general governing equa-
tions for groundwater flow in aquifers and aquitards in a
confined multilayered system with one injection or one
leaky well. The one-dimensional radial flow equations for
aquifers are coupled with each other through the vertical
flow in aquitards. In the presence of leaky wells, the
groundwater flow in aquifers is also coupled through leak-
age via leaky wells. The boundary conditions at the injec-
tion and leaky wells are presented below.

2.3. Boundary Conditions for Active and Leaky Wells
[19] We define a well with a known injection rate (or a

known pumping rate) as an active well, and a well with an
unknown flow rate driven internally by hydraulic head gra-
dients through well–aquifer segments as a leaky (passive)
well [Nordbotten et al., 2004]. For an active (injection)
well, the injection rate may be constant or time-dependent,
and the boundary condition at its radial wall of the cylindri-
cal well interval screened in aquifer i is given by

� 2�rwi;mTi
@sI

i;m rwi;m; t
� �
@r

¼ Qi;mðtÞ; ð7Þ

where Qi,m(t) is the injection rate through injection well m
into aquifer i, and sI

i;m is the head buildup in aquifer i caused
by injection at well m. Note that Qi,m(t) > 0 for injection.

[20] For a leaky well (leaky well l), the flow rate between
aquifer i and the well is unknown and depends on the hy-
draulic head within the well segment, which is affected by
the conditions in the two well–aquitard segments (Lþi;l and
L�i;l) overlying and underlying the well–aquifer segment
(Li,l). In turn, the head buildup in all aquifers (as well as in
the aquitards) depends on the unknown well leakage rate.
For leaky well l, the boundary condition at well–aquifer
segment Li,l is given by

�2�rLi;lTi
@sL

i;l rLi;l; t
� �
@r

¼ ui;lðtÞ; ð8aÞ

where sL
i;l is the hydraulic head buildup in response to the

unknown well leakage rate ui,l(t). Note that ui,l(t) < 0 for
leakage from the aquifer and ui,l(t) > 0 for recharge into

the aquifer. The vertical flow through a well–aquitard seg-
ment, L�i;l, can be written as,

u�i;l ¼ �
1

��
i;l

sT
i;l � sT

iþ�;l

� �
; ��

i;l ¼
B�i

K�
Li;l � r�Li;l

� �2 ; ð8bÞ

where sT
i;l is the total head buildup (transient actual head

buildup) evaluated at the leaky well under the effects of all
active and leaky wells, and ��

i;l (T L�2) is the resistance to
flow through the well–aquitard segment. The continuity
equation for the net leakage rate into or out of aquifer i
through a leaky well connecting three consecutive aquifers
(i –1, i, i þ 1) (see Figure 1c) is given by

ui;l ¼ uþi;l þ u�i;l ¼
1

��i;l
sT

i�1;l � sT
i;l

� �
� 1

�þi;l
sT

i;l � sT
iþ1;l

� �
;

uþi;l ¼ � u�iþ1;l:

ð8cÞ

[21] For a cased wellbore having fluid exchange only
with aquifer i at the bottom and aquifer i þ k at the top,
equation (8b) can be rewritten as

uþk
i;l ¼ �

1

�þk
i;l

sT
i;l � sT

iþk;l

� �
;

�þk
i;l ¼

Xiþk�1

j¼i

Bþj =ðKþLj;l �rþLj;l
2Þþ

Xiþk�1

j¼iþ1

Bj=ðKLj;l �r2
Lj;lÞ;

ð8dÞ

where the second line in equation (8d) represents the effec-
tive resistance to flow through cased well–aquitard segments
(the first term on the right-hand side) and well–aquifer seg-
ments (the second term on the right-hand side) that are
connected between aquifers i and i þ k. Equations (8a)–(8d)
represent the coupling between leaky wells (l ¼ 1, . . . , NL)
and aquifers through the boundary conditions at the leaky
wellbores. With respect to the upper and lower boundaries
of the entire solution domain, the conditions at the top and
bottom boundary of these leaky wells can be specified as ei-
ther no-flow or zero hydraulic head buildup.

3. Development of Analytical Solutions
[22] After applying the Laplace transform to governing

equations (1)–(8), we develop building blocks of the general
solutions in a multilayered system. The building blocks con-
stitute analytical solutions for (1) diffuse leakage induced
by injection at a single injection well, (2) focused leakage
through one leaky well, with one injection well and no dif-
fuse leakage, and (3) combined diffuse and focused leakage
with one injection well and one leaky well. Following each
category of general solutions, particular solutions for a two-
aquifer–one-aquitard system are used as examples to dem-
onstrate the developed solution procedure and to compare
with existing analytical solutions. We finally employ the
superposition method to present the general solutions for a
multilayered system consisting of N aquifers, NI injection
wells, and NL leaky wells.

3.1. Diffuse Leakage Through Aquitards in a
Multilayered System

[23] The first building block involves the analytical solu-
tions for head buildup and leakage rates in a multilayered
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system with one injection well and diffuse leakage. We sim-
plify the notation by neglecting superscript ‘‘I’’ and sub-
script ‘‘m,’’ since there is no need to distinguish between
different injection wells. The solution procedure includes
Laplace transform of the governing partial differential equa-
tions for both aquifers and aquitards shown in section 2, and
solution of the resulting system of ordinary differential
equations (ODEs) in the Laplace domain by eigenvalue
analysis. Following the general solution for an N-aquifer
system, an example of a two-aquifer–one-aquitard system is
presented to demonstrate the solution procedure and com-
pare it with existing analytical solutions.
3.1.1. Analytical Solution for an N-Aquifer System

[24] By applying the Laplace transform to equation (2a),
for flow in aquitards, we obtain:

d2�s�i
dz�Di

2 ¼
B�i

2p�s�i
D�

i
; ð9aÞ

where p is the Laplace transform variable, and the overbar
denotes the Laplace transform of a variable. The Laplace
transform of the boundary conditions for aquitard (i; �),
equation (2b), becomes

�s�i ðr; 0; pÞ ¼ �siðr; pÞ;
�s�i ðr; 1; pÞ ¼ �siþ�ðr; pÞ:

ð9bÞ

[25] The solution of equation (9a) subject to (9b) for the
head buildup in aquitard (i; �) can be expressed [Maas,
1987b; Cheng and Morohunfola, 1993; Zhou et al., 2009]
as follows:

�s�i ðr; z�Di; pÞ ¼ �si
sinh ��i ð1� z�DiÞ

	 

sinh ��ið Þ

þ �siþ�
sinh ��i z�Di

� �
sinh ��ið Þ

; ð10aÞ

where

��i ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
p=D�

i

q
B�i : ð10bÞ

[26] The Laplace transform of the flow equations for
aquifers, equation (1a), leads to

r2
r�si ¼

p
Di

�si þ
�w�i
Ti
þ �wþi

Ti
: ð11aÞ

[27] After applying the Laplace transform to equation
(1b), we obtain the transformed diffuse leakage, �w�

i :

�w�
i ðr; pÞ ¼ f �i �si � g�i �siþ� ð11bÞ

with

f �i ðpÞ ¼ K�
i =B�i

� �
��i coth ��i

� �
;

g�i ðpÞ ¼ K�
i =B�i

� �
��i csch ��i

� �
:

ð11cÞ

[28] By inserting equation (11b) into (11a), we obtain
the following flow equations for all aquifers in the Laplace
domain:

r2
r�si ¼ �

g�i
Ti

�si�1 þ
p
Di
þ f þi þ f �i

Ti

� �
�si �

gþi
Ti

�siþ1; i ¼ 1; . . . ;N :

ð12aÞ

Equation (12a) is subject to the boundary condition at the
injection well, transformed from equation (7):

�2�rwiTi
d�si rwi; pð Þ

dr
¼ �QiðpÞ; i ¼ 1; . . . ;N ; ð12bÞ

and the condition at the outer lateral boundary, transformed
from equation (4):

�si r!1; pð Þ ¼ 0: ð12cÞ

Equation (12a) forms a coupled system of ODEs and can
be expressed in matrix notation:

r2
r�s ¼ A�s; ð13aÞ

where matrix A, [ai,j]N�N, referred to as the diffuse-
leakage-coupling matrix, is a tri-diagonal matrix, with its
components:

ai;i�1 ¼ �
g�i
Ti
; 2 � i � N ; ð13bÞ

ai;i ¼
p
Di
þ f þi þ f �i

Ti
; 1 � i � N ; ð13cÞ

ai;iþ1 ¼ �
gþi
Ti
; 1 � i � N � 1: ð13dÞ

[29] The system of ODEs, equation (13), can be
decoupled by finding the eigenvalues � and the eigenvec-
tors (n) for the following eigenvalue system [Hunt, 1985;
Hemker and Maas, 1987; Cheng and Morohunfola, 1993]:

A� �Ið Þn ¼ 0; ð14aÞ

where I is a unit diagonal matrix. For a general case, the trans-
misivity (Ti) of each aquifer may differ, and therefore, the dif-
fuse-leakage-coupling matrix is an unsymmetrical N � N
matrix. Following Maas [1986], matrix A can be transformed
into a symmetrical matrix, A0, using A0 ¼ T1=2A T�1=2 and
n0 ¼ T1=2n to guarantee that there exist N real positive eigen-
values associated with N real independent eigenvectors, where
T is the diagonal transmissivity matrix with its components Ti.
Then, equation (14a) can be rewritten as

A0 � �IÞn0 ¼ 0:ð ð14bÞ

[30] We use the eigenvalue analysis to solve equation
(14b) and obtain the eigenvalues �i and the eigenvectors n0,
and thus n ¼ T�1=2n0 that are normalized and orthonormal
relative to T [Hunt, 1985].

[31] The fundamental solution for equation (13a) subject
to the boundary condition in (12c) is expressed by
K0ðr

ffiffiffiffiffi
�k
p
Þ [Maas, 1987b], where K0 is the zeroth-order

modified Bessel function of second kind. After employing
the boundary condition at the wellbore, equation (12b), the
analytical solution to equation (13a) can be written in ma-
trix notation [Hunt, 1985; Hemker and Maas, 1987]:

�s ¼ 1
2�
� F�T �Q ð15aÞ

or

�si ¼
1

2�

XN

j¼1

XN

k¼1

�i;j
K0 r

ffiffiffiffi
�j

p� �
EI

i;j
�k;j

�Qk ; i ¼ 1; . . . ;N ; ð15bÞ
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where F is the diagonal matrix with its components
Fj;j ¼ K0ðr

ffiffiffiffi
�j

p
Þ=EI

i;j, and EI
i;j ¼ rwi

ffiffiffiffi
�j

p
K1ðrwi

ffiffiffiffi
�j

p
Þ with

EI
i;j ¼ 1 as rwi! 0, and K1 is the first-order modified Bessel

function of second kind. �Q is the vector of transformed
injection rates into each aquifer along the injection well.
With computed eigenvalues and eigenvectors and known
injection rates, equation (15b) can be evaluated very effi-
ciently to obtain the Laplace-transformed head buildup in a
multilayered system, caused by injection at a single well
which may have multiple screen intervals. Equation (15b)
can also be written in the form:

�si ¼
XN

j¼1

cI
j �i;jK0 r

ffiffiffiffi
�j

p� �
ð15cÞ

with

cI
j ¼ 1=ð2�EI

i;jÞ
XN

k¼1
�Qk �k;j; ð15dÞ

where cI
j are the coefficients obtained from the boundary con-

dition at the injection wellbore and expressed as a function of
the Laplace variable p. Equations (15) are the generalized
solutions for head buildup in a multilayered system caused
by single-well fluid injection with diffuse leakage. They also
form a general framework for developing an efficient solu-
tion method to the combined leakage problem in section 3.3.

[32] Note that the diffuse-leakage-coupling matrix, A in
equation (13), depends only on the geometric and hydro-
geologic properties of the aquifers and aquitards, as well as
the Laplace variable p (representative of time), whereas it
is independent of the radial distance (r) from the injection
well. Therefore, the eigenvalue problem in equation (14b)
is solved only once for a multilayered system at a given p,
whether one or multiple injection (and leaky) wells may be
involved. The eigenvalue system analysis is repeated for
different p (or time t).

[33] The rate of diffuse leakage through the aquifer–
aquitard interface between aquifer i and its neighboring
aquitard (i; �) can be calculated by integrating equation
(11b) over the entire interface area [Zhou et al., 2009]:

�Q�
i ¼ 2�

Z1
0

�w�
i ðr;pÞrdr ¼

XN

j¼1

XN

k¼1

f �i �i;j�g�i �iþ�;j
� �

�j
�k;j

�Qk ;

i¼ 1; . . . ;N :

ð16Þ

[34] The total leakage rate depends on the hydraulic and
geometric properties of both aquifers and aquitards, and on
the injection rates.

[35] The derivation of the solutions discussed above is
based on the boundary conditions of zero head buildup,
equations (5a) and (6a), at the top and bottom of the entire
system. For a system with a no-flow condition specified at
the bottom boundary in equation (5b) (i.e., i ¼ 1, � ¼ �),
or at the top boundary in equation (6b) (i.e., i ¼ N, � ¼ þ),
equations (10a) and (11c) for the corresponding aquitard(s)
become [Zhou et al., 2009]

�s�i ðr; z�Di; pÞ ¼ �si
cosh ��i ð1� z�DiÞ

	 

cosh ��ið Þ

; ð17aÞ

f �i ðpÞ ¼ K�
i =B�i

� �
��i tanh ��i

� �
g�i ðpÞ ¼ 0:

ð17bÞ

[36] Correspondingly, the matrix coefficients a1,1 and/or
aN,N in the diffuse-leakage-coupling matrix need to be
updated using equation (17b).
3.1.2. An Example for a Two-Aquifer–One-Aquitard
System

[37] To demonstrate the solution procedure, we use, as
an example, a system of two aquifers sandwiched by a
leaky aquitard. A constant rate Q of injection into the bot-
tom aquifer is used. For this two-aquifer–one-aquitard sys-
tem, the diffuse-leakage-coupling matrix, A, in equation
(13), is

A ¼
a1;1 a1;2

a2;1 a2;2

� 
¼

p
D1
þ f 0

T1
� g0

T1

� g0

T2

p
D2
þ f 0

T2

2
664

3
775; ð18aÞ

where

f 0 ¼ ðK 0=B0Þ� cothð�Þ; g0 ¼ ðK 0=B0Þ� cschð�Þ; � ¼
ffiffiffiffiffiffiffiffiffiffi
p=D0

p
B0

ð18bÞ

and superscript (0) denotes the properties of the aquitard.
The symmetrical transformed matrix is

A0 ¼ T1=2A T�1=2 ¼ a1;1

ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
a1;2ffiffiffiffiffiffiffiffiffiffiffiffi

T2=T1

p
a2;1 a2;2

" #
: ð19aÞ

[38] The eigenvalues of A0 are the roots of the character-
istic equation detðA0 � �IÞ ¼ 0:

�1 ¼
a1;1 þ a2;2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1;1 � a2;2
� �2 þ 4a1;2a2;1

q
2

;

�2 ¼
a1;1 þ a2;2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1;1 � a2;2
� �2 þ 4a1;2a2;1

q
2

:

ð19bÞ

[39] The eigenvectors (n0) corresponding to �1 and �2
are found from the solutions of the following homogeneous
equations:

a1;1 � �1

ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
a1;2ffiffiffiffiffiffiffiffiffiffiffiffi

T2=T1

p
a2;1 a2;2 � �1

" #
�01;j
�02;j

" #
¼ 0; j ¼ 1; 2: ð20aÞ

[40] A pair of eigenvector values �0i;j for each eigenvalue
�j (j ¼ 1, 2) is normalized by dividing the square root of
the sum of their squares. Then, computing n ¼ T�1=2n0,
we obtain the eigenvectors orthonormal with respect to T :

�1;1 �1;2

�2;1 �2;2

� 
¼

a1;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1a2

1;2þT2 a1;1��1
� �2

q a1;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1a2

1;2þT2 a1;1��2
� �2

q
� a1;1��1
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1a2

1;2þT2 a1;1��1
� �2

q � a1;1��2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1a2

1;2þT2 a1;1��2
� �2

q

2
666664

3
777775:

ð20bÞ
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[41] With the computed eigenvalues and eigenvectors,
the head-buildup solutions for the example are given by
using equation (15b):

�s1¼
Q

2�p
�2

1;1K0 r
ffiffiffiffiffi
�1

p� �
=EI

1;1þ�2
1;2K0 r

ffiffiffiffiffi
�2

p� �
=EI

1;2

h i
;

�s2¼
Q

2�p
�2;1�1;1K0 r

ffiffiffiffiffi
�1

p� �
=EI

2;1þ�2;2�1;2K0 r
ffiffiffiffiffi
�2

p� �
=EI

2;2

h i
;

ð21Þ

when rwi! 0, EI
1;1¼EI

1;2¼EI
2;1¼EI

2;2¼1 and equation (21)
is equivalent to equations (37a) and (37b) by Cheng and
Morohunfola [1993] using a different solution methodol-
ogy. The solution technique discussed above is more effi-
cient for a multilayered system with N > 2 [Cheng, 1994;
Hemker and Maas, 1994].

3.2. Focused Leakage Through a Well in a
Multilayered System

[42] This section describes the second building block for
focused leakage through a leaky well, with no diffuse leak-
age (i.e., assuming impervious aquitards). Flow in the leaky
well is driven by hydraulic head buildup in the multilayered
system caused by injection at an injection well. In this case,
the head buildup in different aquifers is coupled only by
the well leakage.
3.2.1. Analytical Solution for an N-Aquifer System

[43] We first transform the boundary condition (8a) with
the associated continuity equation in equation (8c) for leak-
age rates through a leaky well (l ¼ 1) and obtain

�2�rLiTi
@�sL

i rLi; pð Þ
@r

¼ �uiðpÞ; ð22aÞ

�uiðpÞ ¼
1

��i
�sT

i�1;l � �sT
i;l

� �
� 1

�þi
�sT

i;l � �sT
iþ1;l

� �
; ð22bÞ

where the total head buildup evaluated at the leaky well is
�sT

i;l ¼ �sI
i;l þ �sL

i;l. Superscripts I and L are used to denote the
head buildup corresponding to the injection well and the
leaky well, respectively. The second subscript l indicates
that the head buildups are evaluated at the leaky well.

[44] In the case of impervious aquitards, the head
buildup in aquifer i caused by injection can be obtained by
solving equation (12a) with f �i ¼ g�i ¼ 0, subject to equa-
tions (12b) and (12c), and expressed as

�sI
i ¼

�Qi

2�TiEI
i

K0 rI
ffiffiffiffiffiffiffiffiffiffi
p=Di

p� �
; ð23Þ

where EI
i ¼ rwi

ffiffiffiffiffiffiffiffiffiffi
p=Di

p
K1ðrwi

ffiffiffiffiffiffiffiffiffiffi
p=Di

p
Þ. Note that in contrast

to the previous section, Ei has one subscript here since the
eigenvalues depend only on the properties of the injection
aquifers. rI is the radial distance from the injection well. In
the case of a negligibly small well radius (rwi! 0) and using
a constant injection rate (Qi), we have �sI

i ¼ Qi=ð2�TipÞK0

ðrI
ffiffiffiffiffiffiffiffiffiffi
p=Di

p
Þ, which is the Theis solution in the Laplace do-

main [Theis, 1935; Zhou et al., 2009].
[45] Similarly, the Laplace-transformed head buildup, �sL

i ,
in aquifer i caused by well leakage at the leaky well can be
expressed in terms of the leakage rate �ui,

�sL
i ¼

�ui

2�TiEL
i

K0 rL
ffiffiffiffiffiffiffiffiffiffi
p=Di

p� �
; ð24aÞ

where EL
i ¼ rLi

ffiffiffiffiffiffiffiffiffiffi
p=Di

p
K1ðrLi

ffiffiffiffiffiffiffiffiffiffi
p=Di

p
Þ, rL is the radial distance

from the leaky well, and rLi is the radius of the leaky well–
aquifer i segment. By superposition, the total head buildup at
an observation point located at rI and rL distances away from
the injection and leaky wells, respectively, is given by

�sT
i ¼

�Qi

2�TiEI
i

K0 rI
ffiffiffiffiffiffiffiffiffiffi
p=Di

p� �
þ �ui

2�TiEL
i

K0 rL
ffiffiffiffiffiffiffiffiffiffi
p=Di

p� �
: ð24bÞ

[46] Substituting the total head buildup, equation (24b),
into the continuity equation on the right-hand side of equa-
tion (22b), we obtain a linear system of equations in terms
of the unknown leakage rates in well–aquifer segments of
the leaky well,

bi;i�1�ui�1 þ bi;i�ui þ bi;iþ1�uiþ1 ¼ di;i�1�s
I
i�1;l þ di;i�s

I
i;l þ di;iþ1�s

I
iþ1;l

ð25Þ

with

bi;i�1 ¼
�1

2�Ti�1EL
i�1��i

K0 rLi�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Di�1

p� �
;

bi;i ¼ 1þ 1
2�TiEL

i

�þi þ ��i
�þi ��i

� �
K0 rLi

ffiffiffiffiffiffiffiffiffiffi
p=Di

p� �
;

bi;iþ1 ¼
�1

2�Tiþ1EL
iþ1�þi

K0 rLiþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=Diþ1

p� �
;

di;i�1 ¼
1

��i
; di;i ¼ �

�þi þ ��i
�þi ��i

; di;iþ1 ¼
1

�þi
;

�sI
i;l ¼

�Qi

2�TiEI
i

K0 R
ffiffiffiffiffiffiffiffiffiffi
p=Di

p� �
;

ð26Þ

where R is the distance from the injection well to the leaky
well. We refer to the resulting matrix, B, as the focused-
leakage-coupling matrix, which represents the coupling by
leakage through the leaky well(s). In the case of a single
leaky well, matrix B (of N � N) is a tri-diagonal matrix. If
multiple leaky wells are involved, the contributions of the
additional leaky wells to head buildup are added to equa-
tion (24b) and matrix B in equation (25) is no longer tri-
diagonal. For N aquifers and NL leaky wells, a system of N �
NL linear algebraic equations can be solved using a standard
matrix-vector solver for the N � NL unknown leakage rates
�ui. Then the head buildup in each aquifer can be obtained by
superposition of the solutions for all the wells.
3.2.2. An Example for a Two-Aquifer–One-Aquitard
System

[47] To demonstrate the solution procedure and compare
with an existing analytical solution, we again use the two-
aquifer–one-aquitard system, but with one injection well,
one leaky well, and no diffuse leakage. A constant rate (Q)
is used for injection into the bottom aquifer. For this system,
equation (24b) can be written for both aquifers 1 and 2 as

�sT
1 ¼

Q
2�T1pEI

1
K0 rI

ffiffiffiffiffiffiffiffiffiffiffi
p=D1

p� �
þ �u1

2�T1EL
1

K0 rL
ffiffiffiffiffiffiffiffiffiffiffi
p=D1

p� �

�sT
2 ¼

�u2

2�T2EL
2

K0 rL
ffiffiffiffiffiffiffiffiffiffiffi
p=D2

p� �
:

ð27Þ

[48] By using equation (25), we obtain two equations
with two unknowns:
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[49] The solution for the leakage rate in the Laplace do-
main is

�u1¼��u2¼

�Q=ð2�T1EI
1ÞK0 R

ffiffiffiffiffiffiffiffiffiffiffi
p=D1

p� �
p �0 þK0 rL1

ffiffiffiffiffiffiffiffiffiffiffi
p=D1

p� �
= 2�T1EL

1

� �
þK0 rL2

ffiffiffiffiffiffiffiffiffiffiffi
p=D2

p� �
= 2�T2EL

2

� �h i:
ð29Þ

[50] The total head buildup in the entire aquifer system
can be obtained using equation (27). When the radii of both
the injection and the leaky wells are negligibly small, i.e.,
EI

1¼EL
1¼EL

2¼1, equations (27) and (29) become identical
to equations (7) and (12) presented in the work of Avci
[1994]. Note that we assumed an initial hydrostatic condition,
while Avci [1994] presented his solutions by assuming an ini-
tially uniform ambient hydraulic gradient between the two
aquifers. Existence of initial uniform head differences in the
aquifers can be incorporated into equation (29), without com-
plicating the solution by any means for the case of focused
leakage only. If the resistance in the leaky well approaches
zero such as in the case of an open borehole, the maximum
possible leakage rate into the overlying aquifer can be esti-
mated by substitution of �0 ¼0 in equation (29).

3.3. Coupled Diffuse and Focused Leakage in a
Multilayered System

[51] The third building block for coupled diffuse and
focused leakage in an N-aquifer system is presented in this
section, starting with one injection well and one leaky well.
The solution procedure combines the solutions presented in
sections 3.1 and 3.2 for diffuse leakage and for focused
leakage, respectively. This building block is a generalized
solution; it will be extended to a system of multiple injec-
tion wells and multiple leaky wells in section 3.4.
3.3.1. Analytical Solution for an N-Aquifer System

[52] Equation (15b) is used for calculating the head
buildup caused by the injection at an injection well in the
presence of diffuse leakage. Similarly, the head buildup
caused by leakage through a leaky well can be expressed,
using equation (15c), as

�sL
i ¼

XN

j¼1

cL
j �i;jK0 rL

ffiffiffiffi
�j

p� �
; i ¼ 1; . . . ;N : ð30aÞ

[53] Using the superposition principle, the total head
buildup caused by both injection and leakage is given by

�sT
i ¼ �sI

i þ �sL
i : ð30bÞ

[54] Note that the flow rate at a well–aquifer segment
may be positive (for recharge from the leaky well) or nega-
tive (for leakage into the leaky well). Also, the hydraulic
head perturbation at well–aquifer segments can be positive
or negative; however, we use the term ‘‘head buildup’’ here
in both cases. The eigenvalues and eigenvectors as described
in section 3.1 are the same for calculating injection- or
leakage-induced head buildup. The coefficients cL

j must be
obtained from the boundary conditions at the leaky well that
were presented in equation (22). By taking a derivative of
equation (30a) and then substituting it into equation (22), we
obtain a system of algebraic equations in the form of:

XN

j¼1

cL
j b1;j ¼ �

1
�þ1

�sI
1;l þ

1
�þ1

�sI
2;l; i ¼ 1;

XN

j¼1

cL
j bi;j ¼

1
��i

�sI
i�1;l �

�þi þ ��i
�þi ��i

�sI
i;l þ

1
�þi

�sI
iþ1;l; 2 � i � N � 1;

XN

j¼1

cL
j bN ;j ¼

1
��N

�sI
N�1;l �

1
��N

�sI
N ;l; i ¼ N ;

ð31aÞ
with

b1;j ¼ 2�K1B1 rL1

ffiffiffiffi
�j

p
K1 rL1

ffiffiffiffi
�j

p� �
þ

	 1
�þ1

K0 rL1

ffiffiffiffi
�j

p� �

�1;j

� 1
�þ1

K0 rL2

ffiffiffiffi
�j

p� �
�2;j;

bi;j ¼ �K0 rLi�1

ffiffiffiffi
�j

p� � 1
��i

�i�1;j þ 2�KiBi rLi

ffiffiffiffi
�j

p
K1 rLi

ffiffiffiffi
�j

p� �	

þ �þi þ ��i
�þi ��i

K0 rLi

ffiffiffiffi
�j

p� �

�i;j �

1
�þi

K0 rLiþ1

ffiffiffiffi
�j

p� �
�iþ1;j;

2 � i � N � 1;

bN ;j ¼ �K0 rLN�1

ffiffiffiffi
�j

p� � 1
��N

�N�1;j þ 2�KN BN rLN

ffiffiffiffi
�j

p
K1

	
rLN

ffiffiffiffi
�j

p� �
þ 1

��N
K0 rLN

ffiffiffiffi
�j

p� �

�N ;j;

ð31bÞ

where equations (31a) and (31b) were written by assuming
the top and bottom of the leaky well are closed (no-flow
boundaries). These equations can be modified for other
types of boundary conditions. For instance, zero buildup at
the top of the well can be assigned for a flowing or an arte-
sian well, in which case the last line in equation (31a) is
modified for i¼ N:

PN
j¼1 cL

j bN ;j ¼ ð1=��N Þ�sI
N�1;l � ð��N þ

�þN Þ=ð��N �þN Þ�sI
N ;l.

1þ 1=ð2�T1EL
1 �0ÞK0ðrL1

ffiffiffiffiffiffiffiffiffiffiffi
p=D1

p
Þ �1=ð2�T2EL

2 �0ÞK0ðrL2

ffiffiffiffiffiffiffiffiffiffiffi
p=D2

p
Þ

�1=ð2�T1EL
1 �0ÞK0ðrL1

ffiffiffiffiffiffiffiffiffiffiffi
p=D1

p
Þ 1þ 1=ð2�T2EL

2 �0ÞK0ðrL2

ffiffiffiffiffiffiffiffiffiffiffi
p=D2

p
Þ

" #
�u1

�u2

( )

¼
�Q K0ðR

ffiffiffiffiffiffiffiffiffiffiffi
p=D1

p
Þ=ð2�T1EI

1p �0Þ

Q K0ðR
ffiffiffiffiffiffiffiffiffiffiffi
p=D1

p
Þ=ð2�T1EI

1p �0Þ

( )
:

ð28Þ
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[55] The focused-leakage-coupling matrix in equation
(31) for the combined leakage problem forms an N � N
matrix for the single leaky well. The system of linear equa-
tions is solved for the unknown cL

j at each p (or time t) by
using linear matrix-solver routines. The leakage rate at a
leaky well–aquifer segment in the Laplace domain can be
expressed by substituting equation (30a) into (22a):

�ui ¼ 2�Ti

XN

j¼1

cL
j �i;jE

L
i;j; ð31cÞ

where EL
i;j ¼ rLi

ffiffiffiffi
�j

p
K1ðrLi

ffiffiffiffi
�j

p
Þ. Similar to equation (16),

the rate of diffuse leakage from aquifer i to aquitard (i; �)
can be calculated using

�Q�
i ¼

XN

j¼1

f �i �i;j � g�i �iþ�;j
� �

�j

XN

k¼1

�k;j
�Qk

 !
þ cL

j

" #( )
: ð32Þ

3.3.2. An Example for a Two-Aquifer–One-Aquitard
System

[56] We again use the two-aquifer–one-aquitard system
with one injection well and one leaky well presented in sec-
tion 3.2.2. The only difference is that the aquitard in this
example is permeable and allows diffuse leakage into and
through it. For this example, the total head buildup in aqui-
fers 1 and 2 is expressed as,

�sT
1 ¼

Q
2�p

�2
1;1=EI

1;1K0 rI
ffiffiffiffiffi
�1

p� �
þ �2

1;2=EI
1;2K0 rI

ffiffiffiffiffi
�2

p� �h i

þ cL
1�1;1K0 rL

ffiffiffiffiffi
�1

p� �
þ cL

2�1;2K0 rL
ffiffiffiffiffi
�2

p� �h i
;

�sT
2 ¼

Q
2�p

�1;1�2;1=EI
2;1K0 rI

ffiffiffiffiffi
�1

p� �
þ �1;2�2;2=EI

2;2K0 rI
ffiffiffiffiffi
�2

p� �h i

þ cL
1�2;1K0 rL

ffiffiffiffiffi
�1

p� �
þ cL

2�2;2K0 rL
ffiffiffiffiffi
�2

p� �h i
:

ð33Þ

[57] The eigenvalues �i and the eigenvectors �i;j for the
two-aquifer–one-aquitard system are given in equations
(19b) and (20b). The coefficients cL

1 and cL
2 must be

obtained from the boundary condition at the wellbore by
employing equation (22):

cL
1 ¼ �

�sI
1;l � �sI

2;l

� �
�0

b1;2 þ b2;2
� �

b1;1b2;2 � b1;2b2;1
� � ;

cL
2 ¼ �cL

1

b1;1 þ b2;1
� �
b1;2 þ b2;2
� � ;

ð34aÞ

where

b1;1 ¼ 2�T1 EL
1;1þ

h 1
�0

K0 rL1

ffiffiffiffiffi
�1

p� �i
�1;1�

1
�0

K0 rL2

ffiffiffiffiffi
�1

p� �
�2;1;

b1;2 ¼ 2�T1 EL
1;2þ

h 1
�0

K0 rL1

ffiffiffiffiffi
�2

p� �i
�1;2�

1
�0

K0 rL2

ffiffiffiffiffi
�2

p� �
�2;2;

b2;1 ¼�
1
�0

K0 rL1

ffiffiffiffiffi
�1

p� �
�1;1þ 2�T2 EL

2;1þ
h 1

�0
K0 rL2

ffiffiffiffiffi
�1

p� �i
�2;1;

b2;2 ¼�
1
�0

K0 rL1

ffiffiffiffiffi
�2

p� �
�1;2þ 2�T2 EL

2;2þ
h 1

�0
K0 rL2

ffiffiffiffiffi
�2

p� �i
�2;2;

�sI
1;l��sI

2;l ¼
Q

2�p
�1;1

�1;1

EI
1;1
� �2;1

EI
2;1

 !
K0 R

ffiffiffiffiffi
�1

p� �"

þ�1;2
�1;2

EI
1;2
� �2;2

EI
2;2

 !
K0 R

ffiffiffiffiffi
�2

p� �#
:

ð34bÞ

[58] When the radii of the leaky well at aquifer segments 1
and 2 are the same, i.e., rL1 ¼ rL2 and EL

1;1 ¼ EL
2;1;E

L
1;2 ¼ EL

2;2,
the coefficients cL

1 and cL
2 simplify to

cL
1¼� �sI

1;l��sI
2;l

� �
�1;2T1=T2þ �2;2
� �

�02�T1EL
1;1 �1;1�2;2��1;2�2;1
� �h

þK0 rL1

ffiffiffiffiffi
�1

p� �
�1;2T1=T2þ �2;2
� �

�1;1� �2;1
� �

þK0 rL1

ffiffiffiffiffi
�2

p� �
�1;1T1=T2þ �2;1
� �

EL
1;1=EL

1;2 �2;2� �1;2
� �i�1

;

cL
2¼�cL

1
�1;1T1=T2þ �2;1

�1;2T1=T2þ �2;2

� �
EL

1;1

EL
1;2
;

ð34cÞ

then, the leakage rate into or from the aquifers through the
leaky well can be calculated using equation (31c):

�u1¼��u2¼� �sI
1;l��sI

2;l

� �
�1;1�2;2��1;2�2;1
� �

�0 �1;1�2;2��1;2�2;1
� �	

þ1=ð2�EL
1;1ÞK0 rL1

ffiffiffiffiffi
�1

p� �
�1;2=T2þ �2;2=T1
� �

�1;1� �2;1
� �

þ1=ð2�EL
1;2ÞK0 rL1

ffiffiffiffiffi
�2

p� �
�1;1=T2þ �2;1=T1
� �

�2;2� �1;2
� �
�1

:

ð35Þ

[59] When the aquitards are impervious, i.e., �sI
2;l ¼

�1;2 ¼ �2;1 ¼ 0, �1;1 ¼ 1=
ffiffiffiffiffi
T1
p

; �2;2¼1=
ffiffiffiffiffi
T2
p

, �1¼
ffiffiffiffiffiffiffiffiffiffiffi
p=D1

p
and �2¼

ffiffiffiffiffiffiffiffiffiffiffi
p=D2

p
, equation (35) reduces to equation (29)

with rL1 ¼ rL2.

3.4. Generalized Solutions for Multiple Active and
Leaky Wells

[60] The solutions obtained in section 3.3 can be general-
ized to a system of N aquifers, NI injection wells, and NL
leaky wells. By using the superposition principle, the total
head buildup in aquifer i is given as

�sT
i ¼

1
2�

XNI

m¼1

XN

j¼1

XN

k¼1

�i;j
K0 rI

m

ffiffiffiffi
�j

p� �
EI

i;j;m
�k;j

�Qk;m

þ
XNL

l¼1

XN

j¼1

cL
j;l �i;jK0 rL

l

ffiffiffiffi
�j

p� �
; ð36Þ

where rI
m is the distance between an observation point at the

global horizontal coordinate (x, y) and injection well m
located at ðxI

m; y
I
mÞ, rL

l is the distance between the observa-
tion point and leaky well l at ðxL

l ; y
L
l Þ, and EI

i;j;m ¼
rwi;m

ffiffiffiffi
�j

p
K1ðrwi;m

ffiffiffiffi
�j

p
Þ. For each injection or leaky well, the

distances from the well center can be calculated using

rI
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xI

m

� �2 þ y� yI
m

� �2
q

;

rL
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xL

l

� �2 þ y� yL
l

� �2
q

:

ð37Þ
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[61] Note that the eigenvalues and the eigenvectors need
to be calculated only once for a given p, no matter how
many injection and leaky wells are involved. The system of
N � NL linear algebraic equations based on equation (31a)
is solved using a standard matrix-vector solver for calculat-
ing the unknown N � NL coefficients cL

j;l for NL leaky wells
(l ¼ 1, . . . , NL). The total leakage rates into or from aqui-
fers through the NL leaky wells can be calculated as

�ui ¼ 2�Ti

XNL

l¼1

XN

j¼1

cL
j;l �i;jE

L
i;j;l; ð38Þ

where EL
i;j;l ¼ rLi;l

ffiffiffiffi
�j

p
K1ðrLi;l

ffiffiffiffi
�j

p
Þ. The total diffuse leak-

age rate through the aquitard–aquifer interfaces can be cal-
culated using

�Q�
i ¼

XN

j¼1

f �i �i;j � g�i �iþ�;j
� �

�j

XNI

m¼1

XN

k¼1

�k;j
�Qk;m

 !
þ
XNL

l¼1

cL
j;l

" #( )
:

ð39Þ

4. Solution Verification
[62] The generalized analytical solutions presented in

section 3 were verified, using the solution procedure pre-
sented in the appendix, in comparison with existing analyti-
cal solutions and (if these were not available) with
numerical simulation results. The first verification tests
focused on leakage in a two-aquifer–one-aquitard system
using the exact analytical solution of Avci [1994] for one
leaky well, as well as the approximate analytical solution of
Nordbotten et al. [2004] for a varying number of leaky
wells. Verification for diffuse leakage was conducted
against the exact analytical solution of Hemker and Maas
[1987] and Maas [1987b] for a system of two aquifers and
three leaky aquitards. The final verification case involved
coupled diffuse and focused leakage in comparison with
results from a numerical simulation. For this purpose, we
used the same two-aquifer–three-aquitard system as
described by Maas [1987b], but added one leaky well.

4.1. Solution Verification for Leakage Through Leaky
Well(s)

[63] We evaluate here a two-aquifer–one-aquitard sys-
tem with one injection well and one leaky well, as previ-
ously considered in the exact analytical solution by Avci
[1994]. A mathematical verification for this case was al-
ready presented in section 3.2.2, i.e., it was shown that our
new generalized solution applied to this specific example
reduces to exactly the same form as in the existing solution.
For additional numerical verification, we compare here the
leakage rate calculated using our solution procedure to the
results given in Table 1 of Avci [1994]. For comparison,
the dimensionless radius of the leaky well, the leaky well
resistance, and the hydraulic conductivity ratio between the
upper and the lower aquifer were chosen from Table 1 in
the work of Avci [1994] as r0a ¼ 0.001, �0 ¼ 0; 100, and
� ¼ 0:1; 10, respectively. To arrive at the same (or similar)
values for these dimensionless parameters, we used typical
hydrogeologic and geometric parameters for the aquifers
and the leaky well as follows: The upper and lower

aquifers are each 20 m thick, separated by an impervious
aquitard of 10 m thickness. The lower aquifer has a hydrau-
lic conductivity of K1 ¼ 10–6 m s�1 and a specific storativ-
ity of 10�5 m�1. The upper aquifer has the same specific
storativity but different hydraulic conductivity value, which
was chosen such that the ratios K2/K1 (i.e., � in the work of
Avci [1994]) become 10 and 0.1. The leaky well has a ra-
dius of 0.2 m, and a hydraulic conductivity of 1.0 m s�1 or
10�4 m s�1. The injection well is located 200 m away from
the leaky well, with a constant unit rate of injection into the
lower aquifer. Note that one of the test cases by Avci
[1994] has a leaky well resistance of �0 ¼ 0, which essen-
tially represents an open-wellbore case with an infinitely
high well conductivity. We simulated this case by using a
very high (but finite) conductivity of 1.0 m s�1 in our code,
corresponding to a leaky well resistance of �0 ¼ 0:01
whose effect is practically equivalent to that of zero resist-
ance (�0 ¼ 0).

[64] Figure 2a exhibits excellent agreement between the
normalized leakage rates (given as a fraction of the unit
injection rate) calculated using our analytical solution and
the values presented in Table 1 of Avci [1994]. Of the three
selected cases shown, the leakage rates are highest for
the case with a well conductivity of KL ¼ 1 m s�1 and
K2/K1 ¼ 10. Significantly less leakage occurs as (1) the
leaky pathway is less permeable (KL ¼ 10–4), or (2) the
upper aquifer is less permeable (K2/K1 ¼ 0.1). In the latter,
leakage will result in greater pressure buildup locally
around the leaky well in the upper aquifer and thus a lower
vertical hydraulic gradient (driving force) along the leaky
well. Thus, the reduced driving force results in less leakage
from the bottom aquifer to the top aquifer. Figure 2b shows
the transient hydraulic head buildup at an observation well
200 m away from both the injection and leaky wells, for
the high-leakage case with K2/K1 ¼ 10 and KL ¼ 1 m s�1.
Again, we observe excellent agreement between the analyt-
ical solutions for the head buildup in both aquifers. Because
of the leakage effect, the late-time head buildup (s1) in the
injection aquifer deviates from (becomes less than) the log-
arithmic curve represented by the Theis solution.

[65] To demonstrate our analytical solutions for prob-
lems involving a larger number of hydrogeologic layers,
we evaluated additional leakage cases with, respectively,
two, three, and four aquifers and alternating aquitards over-
lying the injection aquifer. The overlying aquifers have the
same parameters as the injection aquifer, and all aquitards
have identical properties. The leaky well, which is screened
within each aquifer, has a conductivity of KL ¼ 1 m s�1.
Figure 3 shows the normalized leakage rate for (1) flow
from the injection aquifer into the leaky well, and (2) flow
from the leaky well into the top aquifer. We note that
the leakage rate out of the injection aquifer increases with
the number of aquifers (because the driving force for leak-
age within the well increases), while the leakage rate into
the top aquifer decreases (as an increasing fraction of the
leaking fluid in the well recharges laterally into the overly-
ing aquifers). Nordbotten et al. [2004] referred to this mul-
tilayered system behavior as an ‘‘elevator effect.’’

[66] A scenario with multiple leaky wells is considered
in our second verification example, which involves com-
parison against the approximate analytical solution given
by Nordbotten et al. [2004]. The test problem consists of
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two aquifers with identical hydraulic conductivity (i.e., 2 �
10�7 m s�1) and identical storage coefficient (i.e., Ss � B ¼
5 � 10�7), bounded at the top and the bottom by impervi-
ous boundaries. The lower and upper aquifers are 20 and
30 m thick, respectively, and the separating impermeable
aquitard is 15 m thick. The system also contains one injec-
tion well operating at a constant injection rate and a vary-
ing number (NL ¼ 1 to 10) of leaky wells arranged in a
regular circular pattern at 1 m distance from the injection
well [Nordbotten, personal communication, 2011]. The
leaky wells all have a radius of 0.15 m and a hydraulic con-
ductivity of 2 � 10�4 m s�1.

[67] Figure 4 shows the total well-leakage rate (normal-
ized by the injection rate) as a function of the number of
leaky wells. Our exact solution is in a reasonable agree-
ment with the approximate solution of Nordbotten et al.

[2004], and in an excellent agreement with a high-resolu-
tion numerical simulation conducted with the COMSOL
multiphysics package. We may postulate that the minor
underestimation of leakage rate by Nordbotten et al.’s
[2004] results is caused by approximations in their solution
procedure: In their solution, the convolution integral in the
real time domain is approximated (1) by using only the first
few finite terms of the infinite-series well function, and (2)
by replacing the time-varying leakage rate in leaky wells
with a Heaviside step function.

4.2. Solution Verification for Diffuse Leakage
[68] We utilize here the exact analytical solution for dif-

fuse leakage in a two-aquifer–three-aquitard system by Maas
[1987b] and Hemker and Maas [1987]. The aquifer system
consists of two aquifers and three alternating aquitards of

Figure 3. Normalized rate of well leakage in multilayered systems with varying number of aquifers
and alternating aquitards (a) from the bottom (injection) aquifer and (b) into the top aquifer calculated
using the developed analytical solutions for multilayered systems, showing the elevator effect of succes-
sive well leakage.

Figure 2. Verification of the developed analytical solutions for a two-aquifer–one-aquitard system
with focused leakage only and a single leaky well, by comparing (a) the calculated transient normalized
rate of well leakage and (b) the calculated head buildup in both aquifers with their existing solutions
given by Avci [1994].
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infinite lateral extension, with a condition of zero pressure
change at the top and bottom boundaries. The two aquifers
have the same transmissivity of T ¼ 100 m2 d�1, and an
identical storage coefficient Ss � B ¼ 10�4. The aquitards
have the same thickness and have hydraulic conductivity and
specific storativity values assigned such that B0/K0 ¼ 100 d
and S0s � B0 ¼ 1.6 � 10�3. Injection occurs into the bottom
aquifer at a constant rate of 400 � m3 d�1. An observation
well is located 10 m away from the injection well.

[69] Figure 5 shows the hydraulic head buildup in both
aquifers, calculated using our analytical solution in compar-
ison with the results of Maas [1987b] and Hemker and
Maas [1987] (Table 1 of Maas [1987b]). (Note that Maas
[1987b] and Hemker and Maas [1987] used Q ¼ �400 �
m3 d�1 for pumping-induced drawdown analysis, which we
converted into the equivalent case of head buildup from
injection.) The agreement between the solutions is excel-
lent. The head buildup in the injection aquifer increases rap-
idly after the onset of injection and then reaches a steady
state value after �1 d. The start of head buildup in the upper
aquifer is slightly delayed compared to the injection aquifer,
because the head buildup due to injection needs to propa-
gate through the lower-permeability aquitard. However, a
steady state behavior is also reached after �1 d. The fact
that the system approaches steady state so quickly can
mainly be attributed to the high aquitard hydraulic conduc-
tivity (or small aquitard thickness) corresponding to the pa-
rameter choice B0/K0 ¼ 100 d, as well as the imposed
boundary condition of zero head change at the top and
bottom of the domain.

4.3. Solution Verification for Coupled Diffuse and
Focused Leakage

[70] A coupled diffuse and focused leakage problem is
achieved by introducing a leaky well into the two-aquifer–
three-aquitard system presented in the previous section. The

leaky well is located 25 m away from the injection well
along the same line as the injection and observation wells.
The leaky well has a radius of 0.15 m and a hydraulic con-
ductivity 1000 times higher than the hydraulic conductivity
of the aquifers. Since no existing analytical solutions are
available for solution verification of this coupled diffuse
and focused leakage example, we employed numerical sim-
ulation results for single-phase flow obtained using the
COMSOL multiphysics software. A three-dimensional sim-
ulation domain was generated with lateral dimensions of
6000 m � 6000 m. This lateral model extent proved to be
sufficient, since no boundary effects were observable within
the simulation time period.

[71] Figure 5 shows the head buildup in the injection aq-
uifer and the overlying aquifer at the observation well,
located between the injection well (10 m away) and the
leaky well (15 m away). The agreement between the two
solutions is very reasonable, indicating that the generalized
analytical solution for coupled diffuse and focused leakage
works well. Compared to the case with only diffuse leak-
age, introduction of a leaky well gives rise to a slightly
reduced head buildup in the bottom aquifer together with
an earlier and slightly stronger head buildup in the upper
aquifer. It appears, however, that the effect of well leakage
is not very significant in the example. This is because of
the high aquitard conductivity selected in the example case
by Maas [1987b] and Hemker and Maas [1987], which
makes diffuse leakage more dominant than it would typi-
cally be. More realistic hydrogeologic and geometric prop-
erties of a multilayered system are presented in the
following section.

5. Application Example
[72] To demonstrate the capability of our generalized an-

alytical solution, we applied it to a more complex example

Figure 4. Verification of the developed analytical solu-
tions for a two-aquifer–one-aquitard system with focused
leakage only and varying number of leaky wells, by com-
paring the calculated normalized leakage rate, as a function
of the number of leaky wells involved, with the existing ap-
proximate solution by Nordbotten et al. [2004] and a high-
resolution numerical solution.

Figure 5. Verification of the developed analytical solu-
tions for a two-aquifer–three-aquitard system by comparing
the calculated transient head buildup at the observation
well in both aquifers with the analytical solution by Maas
[1987b] and Hemker and Maas [1987] in the case of diffuse
leakage only, and with a numerical solution in the case of
coupled diffuse and focused leakage with one leaky well.
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involving a confined multilayered system consisting of
eight aquifers (N ¼ 8) and seven alternating aquitards, with
one injection well (NI ¼ 1) and one leaky well (NL ¼ 1).
The solution domain extends infinitely in the horizontal
direction and has no-flow boundary conditions at the top
and the bottom. Each of the aquifers is homogeneous, iso-
tropic, and 60 m thick, with a hydraulic conductivity of 2 �
10�1 m d�1 (i.e., a permeability of 10�13 m2) and a specific
storativity of 1.89 � 10�6 m�1. Each of the seven aquitards,
also assumed homogeneous and isotropic, has a thickness of
100 m, a hydraulic conductivity of 2 � 10�6 m d�1 (i.e.,
a permeability of 10�18 m2), and a specific storativity of
7.37 � 10�7 m�1 [Zhou et al., 2009]. The hydrogeologic
properties for aquifers and aquitards are representative of
deep sedimentary basins with alternating sandstone and
shale formations, some of which have recently been investi-
gated for geological storage of CO2 [National Energy Tech-
nology Laboratory, (NETL), 2010].

[73] To demonstrate the impact of pressure perturbation
and its effect on coupled diffuse and focused leakage, we
assumed that large-scale fluid injection takes place in the
center of the domain. Injection occurs into the bottom aqui-
fer at a rate of 5700 m3 d�1 (i.e., 2.08 � 106 m3 yr�1) for
30 yr. (These injection parameters, as well as the formation
properties, are similar to a numerical simulation study by
Birkholzer et al. [2009], in which the pressure effects gen-
erated from industrial-scale injection of CO2 were investi-
gated.) The leaky well, open to all eight aquifers, has a

radius of 0.15 m and is located 2000 m away from the injec-
tion well. For sensitivity analysis, we used four different
values of hydraulic conductivity for the leaky well
(2 � 105 m d�1, referred to as the base case, as well as 2 �
104 m d�1, 2 � 103 m d�1, and zero). An observation well
is located at a distance of 1990 m from the injection well
and 10 m from the leaky well, with all three wells arranged
along a horizontal line. For simplification, we assume that
the density and viscosity of groundwater (thus, hydraulic
conductivity and specific storativity) do not change in space
and time, even though the entire domain is 1180 m from top
to bottom. We also assume that the injected fluid has the
same properties as the native groundwater.

[74] Figure 6 shows results from the new analytical solu-
tions in the form of vertical profiles of head buildup at 30
(end of injection) and 100 yr (70 yr after the end of injec-
tion). As can be observed from the zero well conductivity
case, diffuse leakage alone leads to head buildup in aquifers
2, 3, and 4 and aquitards 1, 2, and 3 at the end of the fluid
injection (Figure 6a). Notice the quasi-linear head profile in
each of the perturbed aquitards, which is in contrast with
early-time behavior where steep gradients can be observed
at aquifer–aquitard interfaces (not shown in the figure). This
is because the time for head propagation through aquitards,
which can be calculated using equation (10), is only about
1.6 yr. The head-buildup profiles change significantly with
increasing hydraulic conductivity of the leaky well, showing
relatively less perturbation in the injection formation

Figure 6. Vertical profiles of hydraulic head buildup (m) at the observation well as a function of
hydraulic conductivity of the leaky well at (a) 30 and (b) 100 yr.
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(aquifer 1) combined with more extensive and stronger
buildup in overlying aquifers. For the highest well conduc-
tivity (2 � 105 m d�1), the maximum buildup in the injec-
tion aquifer decreases by �50% compared to the case
without a leaky well ; and head changes propagate all the
way up to the top aquifer, indicating that in this case deep,
saline groundwater might be pushed into the shallow
aquifer.

[75] As injection stops after 30 yr, the system starts to
re-equilibrate, both horizontally (within the aquifers as
head changes propagate away from the injection location)
and vertically (through diffuse leakage and well leakage
into overlying aquifers and aquitards). This process has
been almost (but not entirely) completed at 100 yr (Figure
6b), with the high-permeability leaky well case furthest
along. This is evident from the head buildup in the bottom
aquifer which has now decreased to a small fraction of the
maximum buildup observed during injection, and from the
small head changes that can now be seen over the entire
vertical extent of the domain.

[76] Figure 7 contrasts the flow rates from diffuse and
focused leakage at aquifer–aquitard interfaces, here showing
the base case with a hydraulic conductivity of 2 � 105 m d�1

for the leaky well. Despite the high well hydraulic conduc-
tivity, the diffuse leakage rate out of the injection formation
(aquifer 1) exceeds the focused leakage rate by a factor of
approximately three. At the end of injection, diffuse and
focused leakage rates together account for �75% of the
injection rate, indicating how important diffuse pressure
bleed-off and leaky wells can be in reducing injection-related
head buildup. As can be expected from the permeability con-
trast and the differences in storativity, the response to system
perturbation is much faster for focused leakage compared to
diffuse leakage, which can be observed at the beginning of
injection and also when injection stops.

[77] The next example results demonstrate the use of the
new analytical solutions in a sensitivity evaluation. Figure 8
shows the 30-yr cumulative volume of well leakage leaving
the injection aquifer (normalized by the cumulative injected

groundwater volume) as a function well conductivity (KL)
for five different cases of aquitard conductivity (K0). (The
aquifer conductivity remains unchanged at 0.2 m d�1.) As
expected, the cumulative well-leakage volume is strongly
affected by well conductivity. While this is true over a wide
parameter range, all leakage curves start approaching an
asymptotic maximum value at about 106 to 107 m d�1; fur-
ther increases in well conductivity do not result in further
increases in leakage volume. The cumulative well leakage
is also quite sensitive to aquitard conductivity: As aquitards
become more permeable, the cumulative flow through the
well reduces significantly. This means that the rate of
focused leakage through leaky wells and the cumulative
leakage volume can be severely overestimated if aquitards
with nonzero conductivity would be assumed impermeable
[Javandel et al., 1988; Avci, 1994; Nordbotten et al., 2004].

Figure 7. Comparison of diffuse and focused leakage rate (m3 d�1) of groundwater through the top of
aquifers 1–7, as a function of time. Aquifer 1 is the bottom aquifer in which injection occurs. The leaky
well hydraulic conductivity is 2 � 105 m d�1.

Figure 8. Effect of aquitard conductivity (K0) on cumu-
lative leakage through the leaky well from the injection
aquifer after 30 yr, with the aquifer conductivity fixed at
0.2 m d�1.
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6. Summary and Conclusions
[78] A new set of generalized analytical solutions is pre-

sented for coupled diffuse and focused leakage in a multi-
layered system consisting of any number of aquifers,
alternating aquitards, pumping/injection wells, and leaky
wells. The paper discusses in detail the governing equations
for horizontal flow in the aquifers, which are coupled with
each other by the expressions for vertical flow in alternat-
ing aquitards and leaky wells, and reviews the initial and
boundary conditions, as well as the conditions at aquifer–
aquitard interfaces, well–aquifer interfaces, and well–
aquitard interfaces. The solution methodology is as follows:
First, the governing equations for N aquifers, alternating
aquitards, and NL leaky wells are transformed into the Lap-
lace domain. Second, the diffuse-leakage coupling between
the N aquifers, which results in a system of N coupled ordi-
nary differential equations (ODEs) written in a matrix-
vector form, is decoupled via eigenvalue analysis. This
allows solutions for pressure perturbation in response to
injection/pumping at an active well to be obtained inde-
pendently for each aquifer. Third, employing the superposi-
tion method and expressing the boundary conditions at
leaky wells through continuity equations results in a system
of NL � N linear algebraic equations. This equation system
is solved to provide expressions for the drawdown due to
leaky wells and the unknown leakage rates at the NL � N
well–aquifer segments. The total head buildup and the rates
of focused and diffuse leakage in response to NI injection
wells and NL leaky wells are then obtained using superposi-
tion. For ease of application, a FORTRAN-based software
package was developed which reads in the problem specifi-
cations, executes the calculation, and returns calculation
results. The latter involves numerical inversion to convert
results given in the Laplace domain into the corresponding
variables in the real time domain.

[79] The new solutions described here encompass and
advance the features and capabilities of existing analytical
solutions (which are available for diffuse leakage, or for
focused leakage, but not for both combined) and provide an
important improvement in solving analytically the subsurface
flow processes in multilayered aquifer–aquitard systems.
Accuracy of the new solutions was verified against existing
analytical solutions for diffuse leakage and for focused leak-
age. Additional verification for coupled diffuse and focused
leakage was conducted via comparison against numerical
solutions. An example application involving an eight-aquifer
system with leaky aquitards and one leaky well illustrated
how the new solutions can be useful in evaluating the large-
scale perturbations of hydraulic head and fluid flow in
response to major fluid injection/pumping operations. The
examples also showed the high computational efficiency of
the new solutions, even for cases with a large number of
alternating aquifers and aquitards, and multiple active and
leaky wells.

Appendix A: Solution Procedure
[80] For ease of application, we developed a FORTRAN-

based software package that reads in the problem specifica-
tions, executes the analytical solution, and calculates (1)
the time-dependent hydraulic head buildup in aquifers and
aquitards, (2) the transient rate of diffuse leakage through

aquifer–aquitard interfaces, and (3) the transient rate of
focused leakage through leaky wells. The software package
includes the following solution steps:

[81] 1. Assemble the N � N diffuse-leakage-coupling ma-
trix, A, for the coupled system of ODEs by calculating its
tri-diagonal coefficients based on equations (13b)–(13d),
(11c), and (10b), using specified hydrogeologic and geo-
metric properties of aquifers and aquitards, and the condi-
tions at the top and bottom boundaries.

[82] 2. Decompose matrix A into eigenvalue and eigenvec-
tors using equation (14) and a linear eigensystem solver
subroutine in the Fortran IMSL library. Because the diffuse-
leakage terms f �i ðpÞ; g�i ðpÞ are functions of transform vari-
able p, the development and decomposition of matrix A are
needed only once at a given time, no matter how many injec-
tion wells and leaky wells are involved. The eigenvalue sys-
tem analysis is not required when all alternating aquitards are
impervious; in this case, A is a diagonal matrix, and no cou-
pling between different aquifers is caused by diffuse leakage.

[83] 3. Superpose the head buildup induced by injection,
with a known rate, at each injection well and by leakage,
with an unknown rate, at each well–aquifer segment of all
leaky wells to calculate the total head buildup under all
influences using equation (36).

[84] 4. Develop the system of N � NL linear algebraic
equations for all well–aquifer segments involving all leaky
wells using the superposed total head buildup, on the basis
of equations (30) and (31); solve the resulting equations
for the unknown coefficients cL

j;l using linear system solvers
in the Fortran IMSL library. With diffuse leakage, the
focused-leakage coupling matrix, B, is a full matrix.

[85] 5. Calculate the diffuse leakage rates through aqui-
fer–aquitard interfaces using equations (11b) and (11c),
and interface-integrated leakage rates using equation (39)
under influences of all active and leaky wells ; calculate the
head buildup in aquitards using equation (10), with the
solved head buildup in neighboring aquifers, when diffuse
leakage is involved.

[86] 6. Numerically invert these solutions in the Laplace
domain to obtain their corresponding variables (i.e., head
buildup in aquifers and aquitards, diffuse leakage rates, and
focused leakage rates, as well as their cumulative rates) in
the real time domain using the Stehfest numerical Laplace
inversion method [Stehfest, 1970a, 1970b]. This method is
well suited for groundwater hydraulics problems [Hemker
and Maas, 1987; Cheng and Morohunfola, 1993]. In the
Stehfest method, the solution in a real time domain is
approximated by a finite series. There is a tradeoff between
the number of terms in the series and the round-off error.
Hemker and Maas [1987] suggested using 10 terms in the
series, while we found that using 16 terms produced accu-
rate and efficient calculations in our applications. For strong
changes in injection/pumping rates and multiple-injection/
pumping periods, we employ a superposition method in time
by adding separate smooth solutions for each period interval
with constant-rate injection/pumping. In this way, possible
errors resulting from using the Stehfest method for cases
with abrupt changes are avoided.

[87] Execution of all above steps is only needed for a
problem involving both diffuse and focused leakage. Step 4
is not required for a system without leaky wells. Steps 1, 2,
and 5 can be omitted for a system with impervious
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aquitards. The solution procedure is very efficient, and
computational time for each of the verification and applica-
tion examples is <1 s. The FORTRAN code developed in
this paper can be obtained from the authors upon request.
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